Welcome to our CHEM 4 lecture!

Go to <u>LearningCatalytics.com</u> Session ID =

CHEM 4 website: tinyurl.com/SacStateChem4

Week 15: December 7 (Monday)	December 9 (Wednesday)	December 11 (Friday)	
 Before class: Read 8.1-8.4 [reaction calculations] (90 min) PAL worksheets for week 15: <u>A</u> and <u>B</u> 	Before class: • Read 8.5-8.6 [limiting reactants] (2 hours)	 Before class: I'll spend the review session answering your questions from Practice Final exams (<u>A</u> and <u>B</u>). Today, before class is the last day to <u>submit late homework</u> for credit. 	
 After class: Today's PowerPoint slides and recording (45 min) MasteringChemistry #30 (40 min) [Due: W, 12/9] Prepare for our review session [F, 12/11] and final exam [see dates next week]. Practice finals: <u>A</u> and <u>B</u> (2 hours each). You have until Dec 11 to complete your online CHEM 4 student evaluation in Canvas. Here is a <u>video explaining</u> the process. 	 After class: Today's PowerPoint slides and recording (45 min) <u>MasteringChemistry #32</u> (40 min) [Due: F, 12/11] Prepare for our review session [F, 12/11] and final exam [see dates next week]. Practice finals: <u>A</u> and <u>B</u> (2 hours each). Before class on F, 12/11 is the last day to <u>submit late homework</u> for credit. 	 After class: Finish preparing for our final exam [see dates next week]. Practice: A and B (2 hours each) Verify your updated homework and clicker grades on <u>Canvas</u> (posted by 12 midnight). Verify that you have credit for completing the Commit to Study program on <u>Canvas</u> (posted by 12 midnight). 	
Week 16: December 14 (Monday) CHEM 4, Sec 01 (meets MFW @ 8 am) Final exam time = 8:00 - 10:00 am • Covers: Cumulative, with a slight stress on material since last exam (sections 8.1 - 8.6). • Practice: A, B (2 hours each) • Log onto our Final using Canvas		December 18 (Friday) CHEM 4, Sec 03 (meets MWF @ 10 am) Final exam time = 8:00 - 10:00 am • Covers: Cumulative, with a slight stress on material since last exam (sections 8.1 - 8.6). • Practice: A, B (2 hours each) • Log onto our Final using Canvas	

CHEM 4 lecture

Monday – December 7, 2020

Sec 8.1 - 8.4 Reaction calculations

Background: Moles flowchart

Reading question: Mole-to-mole ratios from balanced reactions (Part A) Go to LearningCatalytics.com Session ID =

1) After balancing the following equation, which of the following would be an appropriate conversion factor to relate H_2O to H_2 :

$$\underbrace{\text{NO}(g) + \underline{H_2(g)} \rightarrow \text{NH}_3(g) + \underline{H_2O(g)}}_{A) \quad \underline{5 \, g \, H_2}} \qquad B) \quad \underline{2 \, g \, H_2}_{\underline{5 \, g \, H_2O}} \qquad C) \quad \underline{5 \, \text{mol} \, H_2}_{\underline{2 \, \text{mol} \, H_2O}} \qquad D) \quad \underline{2 \, \text{mol} \, H_2O}_{\underline{5 \, \text{mol} \, H_2O}}$$

Answer:
$$2NO(g) + 5H_2(g) \rightarrow 2NH_3(g) + 2H_2O(g)$$

Clicker question: Mole-to-mole ratios from balanced reactions (Part B) Go to LearningCatalytics.com Session ID =

2) Using the equation we just balanced, how many moles of water can form from3.0 mol of hydrogen gas?

 $2NO(g) + 5H_2(g) \rightarrow 2NH_3(g) + 2H_2O(g)$

A) $7.5 \mod H_2O$ B) $6.0 \mod H_2O$ C) $15 \mod H_2O$ D) $1.2 \mod H_2O$

Answer:

$$(3.0 \text{ mol } H_2) \left(\frac{2 \text{ mol } H_2 O}{5 \text{ mol } H_2}\right) = 1.2 \text{ mol } H_2 O$$

Clicker question: Mole-to-mole ratios from balanced reactions (Part C) Go to LearningCatalytics.com Session ID =

3) Using the same balanced equation from the previous question, how many grams of H_2O can be made from 23.0 g of H_2 ?

$$2NO(g) + 5H_2(g) \rightarrow 2NH_3(g) + 2H_2O(g)$$

A) 164 g H ₂ O	C) 82.2 g H ₂ O
B) 6.43 gH ₂ O	D) 3.22 g H ₂ O

Answer:

Plan: $g H_2 \rightarrow mol H_2 \rightarrow mole H_2O \rightarrow g H_2O$

Work:
$$(23.0 \text{ g H}_2) \left(\frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2}\right) \left(\frac{2 \text{ mol H}_2 0}{5 \text{ mol H}_2}\right) \left(\frac{18.02 \text{ g H}_2 0}{1 \text{ mol H}_2 0}\right) = 82.2 \text{ g H}_2 0$$

Clicker question: Mole-to-mole ratios from balanced reactions Go to <u>LearningCatalytics.com</u> Session ID =

4) What is the maximum mass (in g) of precipitate that can form when an aqueous sample containing 10.0 g of sodium chloride is added to excess aqueous lead(II) nitrate?

A)	9.05 g PbCl ₂	D) 9.05 g NaNO_3
B)	14.5 g PbCl_2	E) 14.5 g NaNO ₃
C)	23.8 g PbCl ₂	F) 23.8 g NaNO ₃

Answer:

Equation: $2 \operatorname{NaCl}(aq) + \operatorname{Pb}(\operatorname{NO}_3)_2(aq) \rightarrow 2 \operatorname{NaNO}_3(aq) + \operatorname{PbCl}_2(s)$

Plan: $g \operatorname{NaCl} \rightarrow \operatorname{mol} \operatorname{NaCl} \rightarrow \operatorname{mol} \operatorname{PbCl}_2 \rightarrow g \operatorname{PbCl}_2$

Work:
$$(10.0 \text{ g NaCl}) \left(\frac{1 \text{ mol NaCl}}{58.44 \text{ g NaCl}}\right) \left(\frac{1 \text{ mol PbCl}_2}{2 \text{ mol NaCl}}\right) \left(\frac{278.1 \text{ g PbCl}_2}{1 \text{ mol PbCl}_2}\right) = 23.8 \text{ g PbCl}_2$$

7

Clicker question: Mole-to-mole ratios from balanced reactions Go to LearningCatalytics.com Session ID =

5) Assuming gasoline is pure octane (C_8H_{18}) , how many kg of the green-house gas, carbon dioxide are produced (and injected into our atmosphere) from the combustion of one 15-L tank of gas? The density of octane is 0.703 g/mL.

A) 33 kg CO ₂	D) 66 x 10 ⁴ kg CO ₂
B) 66 kg CO ₂	E) 16 kg CO ₂
C) 4.1 kg CO ₂	F) 3.3 x 10 ⁴ kg CO ₂

Answer:

Equation: $2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2 O(g)$

 $Plan: \quad L C_8 H_{18} \rightarrow mL C_8 H_{18} \rightarrow g C_8 H_{18} \rightarrow mol C_8 H_{18} \rightarrow mol CO_2 \rightarrow g CO_2 \rightarrow kg CO_2$

Work:

$$(15 \text{ L } \text{C}_8 \text{H}_{18}) \left(\frac{1 \text{ mL}}{10^{-3} \text{ L}}\right) \left(\frac{0.703 \text{ g}}{1 \text{ mL}}\right) \left(\frac{1 \text{ mol } \text{C}_8 \text{H}_{18}}{114.22 \text{ g } \text{C}_8 \text{H}_{18}}\right) \left(\frac{16 \text{ mol } \text{CO}_2}{2 \text{ mol } \text{C}_8 \text{H}_{18}}\right) \left(\frac{44.01 \text{ g } \text{CO}_2}{1 \text{ mol } \text{CO}_2}\right) \left(\frac{1 \text{ kg}}{10^3 \text{ g}}\right) = 33 \text{ kg } \text{CO}_2$$

Clicker question: Mole-to-mole ratios from balanced reactions Go to <u>LearningCatalytics.com</u> Session ID =

6) An aqueous solution of silver nitrate reacts with solid copper in a single displacement reaction to form copper(II) nitrate and solid silver. If 67.2 g of silver is obtained during the process, what mass of copper was initially used?

A)	19.8 g Cu	D)	39.6 g Cu
B)	14.7 g Cu	E)	29.4 g Cu
C)	79.2 g Cu	F)	31.0 g Cu

Answer:

Equation: $2 \operatorname{AgNO}_3(aq) + \operatorname{Cu}(s) \rightarrow 2 \operatorname{Ag}(s) + \operatorname{Cu}(\operatorname{NO}_3)_2(aq)$

Plan: mass $Ag \rightarrow mol Ag \rightarrow mol Cu \rightarrow mass Cu$

Work: $(67.2 \text{ g Ag}) \left(\frac{1 \text{ mol Ag}}{107.9 \text{ g Ag}}\right) \left(\frac{1 \text{ mol Cu}}{2 \text{ mol Ag}}\right) \left(\frac{63.55 \text{ g Cu}}{1 \text{ mol Cu}}\right) = 19.8 \text{ g Cu}$